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Abstract. We consider the problem of solving the algebraic system of equations which 
result from the discretization of elliptic boundary value problems defined on three- 
dimensional Euclidean space. We develop preconditioners for such systems based on 
substructuring (also known as domain decomposition). The resulting algorithms are 
well suited to emerging parallel computing architectures. We describe two techniques 
for developing these preconditioners. A theory for the analysis of the condition number 
for the resulting preconditioned system is given and the results of supporting numerical 
experiments are presented. 

1. Introduction. The aim of this series of papers is to propose and analyze 
methods for efficiently solving the equations resulting from finite element discretiza- 
tions of second-order elliptic boundary value problems on general domains in R2 
and R3. In particular, we shall be concerned with constructing computationally 
"effective" preconditioners for these discrete equations which can be used in a pre- 
conditioned iterative algorithm to define a rapid solution method. The methods 
developed are well suited to parallel computing architectures. 

In Part I, [6], a flexible domain decomposition algorithm for the two-dimensional 
problems was developed and analyzed. This algorithm had the novel feature that 
it enabled subdivision into an arbitrary number of subdomains without the dete- 
rioration of the resulting iterative convergence rates. This property has important 
implications in parallel applications since for this type of algorithm, the number of 
subdomains is proportional to the number of parallel tasks. 

In Parts II, [7] and III, [8], we extended the domain decomposition techniques 
along two directions. In Part II, we developed some simplified domain decom- 
position strategies for two- and three-dimensional problems, including a class of 
singularly perturbed systems which occur in parabolic timestepping applications. 
In Part III, we introduced a technique for two-dimensional problems which gave 
rise to domain decomposition strategies whose convergence rates stayed bounded 
independently of both the subdomain size d and the mesh size h. 
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In this part of the series, we will develop two domain decomposition algorithms 
for problems in three dimensions. We shall present a general theoretical approach 
for the analysis of such methods. These methods lead to preconditioned systems 
with condition number bounded by c(1 + In2 (d/h)). In contrast, the simplified 
strategies of Part II give rise to a condition number bounded by cd/h. 

Let Q be a bounded domain in R3 with boundary AQ. As a model problem for 
a second-order uniformly elliptic equation, we shall consider the Dirichlet problem 

Lu= f in Q, 

u=O on WQ, 

where 

3L ai (9i aj 

with {aij} uniformly positive definite, bounded and piecewise smooth on Q. 
In this paper, we shall develop and analyze preconditioners for the matrices 

which result from finite element and finite difference discretization of (1.1). This is 
most naturally carried out from the finite element point of view. Accordingly, we 
shall proceed with the general finite element framework with a detailed formulation 
of both cases considered in Section 2. 

The generalized Dirichlet form corresponding to (1.1) is given by 

(1.2) r(,br aj9 9 z 

which is defined for all v and w in the Sobolev space H' (Q) (the space of distribu- 
tions with square-integrable first derivatives). The L2(Q) inner product is denoted 

(v, w) = j vw dx. 

The subspace Ho (Q) is the completion of the smooth functions with support in Q, 

with respect to the norm in Hl (Q). The weak formulation of the problem defined 
by (1.1) is: Find u E Ho (Q) such that 

(1.3) A(u,w) = (f,w) for all w e Ho (Q) 

This leads immediately to the standard Galerkin approximation. Let Sh(Q) be a 
finite-dimensional subspace of Hol(Q). The Galerkin approximation is defined as 
the solution of the following problem: Find U E Sh(Q) such that 

(1.4) A(U, 4) = (f,I) for all 41 E Sh((Q). 

The underlying method which we will consider is a preconditioned iterative 
method. As explained in Part I, the task of defining a preconditioner for the matrix 
problem corresponding to (1.4) is the same as that of defining another positive def- 
inite form B(-, ) on Sh(Q) x Sh(Q). The importance of making a "good" choice for 
B is well known. The form B will define a good preconditioner provided it has two 
basic properties. First, the problem of finding the function W e Sh(Q) satisfying 

(1.5) B(W, ) = GQO) for all 1 E Sh (Q) , 
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for a given linear functional G, should be more economical to solve on a given 
computer architecture than (1.4). Secondly, B should be spectrally close to A in 
the sense that there are positive numbers 3o and f1 satisfying 

(1.6) 3oB(VI V) < A(V, V) < ,!31B(V,V) for all V E Sh(Q), 

where the ratio 11//3o is not too large. 
We will define the preconditioning form B using domain decomposition and 

'mapping' techniques. The domain Q is written as a union of subdomains U 2. 
The mesh on each subdomain is assumed to be related to the mesh on the reference 
cube Q under a transformation Ti. The framework developed in this paper reduces 
the task of defining domain decomposition preconditioners on Q to a problem of 
defining an appropriate form Q acting on subspaces of functions defined on the 
boundary of the reference domain. A consequence of this approach is that the most 
significant part of the analysis need only be carried out on the reference domain in 
conjunction with a reference subspace. 

The outline of the remainder of the paper is as follows. In Section 2, we describe 
the finite element and finite difference discretizations. We also give the assumptions 
on the subspaces on Q and Q. In Section 3, we show how the construction of the 
preconditioner B can be reduced to the definition of an appropriate form Q. The 
preconditioner B is described in terms of Q in this section. In Section 4, we develop 
two forms Q = Q1 and Q = Q2 which lead to different domain decomposition 
algorithms. It is shown that (1.6) holds with 

,/31/3o < c(1 + In2(d/h)) 

for the domain decomposition form B resulting from either of these two forms. Here, 
d is roughly the domain size and h is the mesh size. The most computationally 
effective preconditioner results from the form Ql. We describe the algorithm for the 
solution of (1.5) in Section 5. Finally, in Section 6, we give the results of numerical 
experiments for some three-dimensional problems. 

For earlier papers dealing with domain decomposition techniques applied to the 
solution of the linear systems resulting from numerical approximation of boundary 
value problems see [2], [5], [9], [10]. The obvious generalizations of these methods 
lead to preconditioned systems whose condition number increases with the number 
of subdomains. Thus, these methods may not lead to effective algorithms on par- 
allel computers. For some numerical results for domain decomposition methods on 
parallel computers see [11]. Additional papers and references for recent work on 
domain decomposition can be found in the proceedings to be published by SIAM of 
the 'First International Symposium on Domain Decomposition Methods for Partial 
Differential Equations' held in Paris 1987. 

A domain decomposition technique which is well suited to applications with re- 
finements is developed in [4]. The resulting algorithms are sometimes the same as 
those developed with the FAC approach of [15] which represent yet another tech- 
nique for developing domain decomposition-like algorithms for refinement problems. 

Before proceeding, we give some notation. In what follows, edges, faces, and 
subdomains will be open sets in R1, R2, and R3, respectively. Let Q be a generic 
domain in Ri for j = 1, 2, 3. For nonnegative s, the Sobolev space of order s on 
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Q will be denoted H8(fQ) (cf. [14], [16]). The norm on H8(Q) will be denoted by 

I, when j = 3 and I *, when j = 1, 2. The L2 inner products and norms 
will be denoted 

(u,v)6= uvdx 

and IIUII = (u, u)4/2 when j = 3, and 

(u,v)6= uvdx 

and UIU1 = (U,U)1/2 when j = 1, 2. 
Throughout this paper, c and C, with or without subscripts, will denote positive 

constants which are independent of the subdivision, d and h. These constants may 
take on different values in different places. 

2. Discretization of (1.1). In this section, we shall formulate the finite ele- 
ment and finite difference methods to be considered. In order to do so, we shall 
first describe our assumptions on the domain Q and its decomposition Q = U Ri. 
We next use this decomposition to define the finite element and finite difference 
approximations. Finally, we describe some norms which will play an essential role 
in the analysis of the preconditioners to be developed in later sections. 

An important aspect of this paper is to reduce the problem of defining domain 
decomposition algorithms on the union of subdomains to a problem on the unit 
cube Q with respect to a reference subspace. The faces of QO will be denoted rf 
for i = 1,... ,6. In addition, the union of the closures of the edges of Q will be 
denoted by re. 

We make the following assumptions with respect to the domain Q: 

(A.1) Q can be subdivided into m subdomains Q = U Ri with R n Qj = 0 for 
is. 

(A.2) These subdomains are related to the unit cube in that for each i there is 
an orientation-preserving trilinear mapping Ti which takes Q onto Qi. We 
assume that there exists a positive constant d such that 

(2.1) d-1 IDTi(x) < C for all x E Q 

and 

(2.2) dIDTi-1(x)I < C for all x E i. 

Here, DTi(x) is the Jacobian matrix of Ti at x. In (2.1) and (2.2), I*I 
denotes the matrix norm. Note that the subdomains are roughly of size d. 

(A.3) The set of faces of ?i is denoted by {Pr{}, where rf3 is defined to be the 

image of the jth face of aQ under Ti. Furthermore, we require that if two 
faces, ri[ and rfP, share a common point x, then = rPf and 

T- 1 (x) = Tork ? Tk- 1 (X) for all x Erf 

where Ti'k is a rigid body rotation of 0. 

We next consider the definition of the approximation procedures. For simplicity 
of presentation, we shall consider particular finite element and finite difference 
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applications. Many generalizations are possible. For either procedure, we partition 
the unit cube into m1 x m2 x m3 regular rectangular parallelepipeds and define 

Sh(Q) to be the functions which are continuous on Q and piecewise trilinear with 
respect to this partition. The reference mesh size h is defined to be 

h = max(1/m1, 1/m2, 1/M3). 

We assume that 
min(1/m1, 1/M2, 1/m3) > Ch. 

We first consider the finite element case. Let h = dh and define 

Sh(Qi) ={ =y5o T1 |=0 on AQ and P E Sh("Q)}. 

Define the map Ii: Sh (7i) Sh (Q) by IiV = V o Ti. Define the space Sh (Q) to be 
the set of continuous functions on Ql whose restrictions on each subdomain Fi are 
functions in Sh (0i). We assume that 

(A.4) Sh(f2i) = {01Qi for 0 E Sh(Q)}. 

This implies that the boundary nodes of Sh(Qi) and Sh(Qj) coincide on common 
faces. 

Note that we obviously have 
m 

A(V,W) = ZAi(V,W) 
i=l 

where 

Ai(V,W)= Ej ajkE aj dx, 

and m is defined in (A.1). The finite element approximation to the solution u of 
(1.1) is the function U E Sh(Q) satisfying (1.4). We will derive preconditioners for 
this problem. 

We next define the finite difference approximation. We only consider the case 
when L is given by 

Lv =-V aVv. 

Assume that (A.1), (A.2) and (A.3) hold and furthermore that the mappings Ti are 
simply dilatation and translation with respect to the coordinate axes. Also assume 
that we have a regular grid of nodal points {pj}V 1 on a mesh of size h defined 
on Q. We label these nodes so that {pj}.N= are the nodes in Q and assume that 
the nodal points of Ri coincide with the image of the nodal points (corresponding 
to the subspace Sh(Q) defined above) of Q under Ti. The space Sh(Q) consists 
of N-dimensional vectors of nodal values at the nodes of Q. The subspace Sh(qi) 

consists of the nodal values at nodes in Q n fli. The map Ii: Sh(Qi) t-+ Sh(Qi) is 

defined by interpolation, i.e., IiV is the function in Sh(Q) defined by 

I V(p) = 
V(Ti(p)) when Tj(p) is a node of Q n fi, 
0 for the remaining nodes of Q. 

Note that Sh(Q) is a finite element subspace of trilinear functions, even when we 
are using the finite difference approximation on Q. 
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Let Xi be the list of neighbors for Sh(Qi), i.e., (k, 1) E X if and only if Pk,PI 
are nodal points in Ri which are a distance of h apart. Let Pk,, be the midpoint 
between Pk and Pi and set 

Ai(V,W) = h W3 E Wk a(Pk,I) (V (Pk) - V(PI))(W(Pk) - 
W(pP)) 

(k,1)EA' 

where we set V(pl) _ W(pj) 0_ for nodes Pl on XI Here, Wkl is the weight 
function defined by 

11 if the line segment between Pk and Pl is in Q2i, 

Wkl= 1/2 if the line segment between Pk and P1 is in some face of Q2i, 

1.1/4 if the line segment between Pk and Pl is in an edge of 9i. 

For functions V, W E Sh (Q) define 
m 

(2.3) A(V, W) =EAi (V, W). 
i=l 

The finite difference approximation to the solution u of (1.1) at the nodes is the 
function U E Sh(Q) satisfying 

(2.4) A(U, Ib) = F 1 for all 1 E Sh((Q), 

where F is the vector {h3f(pk)} and denotes the usual Euclidean inner product. 
Remark 2.1. By summation by parts, it is not difficult to see that the form A 

can be written 
A(V, W) = (LhV) *W, 

where Lh is the usual second-order 7-point difference operator multiplied by h3. 
Thus, the solution U of (2.4) is the standard finite difference approximation to the 
solution of (1.1). We have taken the above approach for developing these equations 
because it naturally gives rise to the decomposition of the form given by (2.3). 

Remark 2.2. For both finite element and finite difference discretizations, we al- 
low for the case when each subdomain Sh(Ri) has a different number of nodes. 
Accordingly, the reference subspace may differ with i. We have suppressed this 
dependence in the notation for convenience. 

We finish this section with some additional notation. Let r = U Ri and sh (r) 
be the space of functions which are restrictions of those in Sh (Q) to r. Let Sho (Ri) 
be the subspace of Sh (R) of functions which vanish on (Mi. Finally, let Sh (97) 

denote the space of restrictions of the functions of Sh (Q) to KA2 and SP (f) denote 

the space of functions in Sh(Q) which vanish on A9. 

3. A General Construction of B(., .). We will define our domain decompo- 
sition form by replacing the terms A, (V, W) in (2.3). To do this, we decompose an 
arbitrary function W E Sh(Ri) into W = Wp + WH, where Wp E Sh?(Q2) and 

(3.1) Ai (WH, 4) = O for all 4b E Sho(f2z). 

WH is the unique function in Sh(Ri) which equals W on &'i and satisfies (3.1). 
Such a function will be called 'discrete Ai-harmonic.' A consequence of (3.1) is that 

(3.2) A (W, W) = A? (W,, Wp) + A (WH, WH). 
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To define our preconditioner B, we shall replace the term Ai (WH, WH) above. 
We note that assumptions (2.1) and (2.2) imply 

(3.3) cAi(V,V) < d6iD(IjV,IjV) < CAi(V,V) for all V e Sh(Qi), 

in the finite element case. Here D(.,) denotes the Dirichlet integral and is defined 
by 

D(v,w) -JVv.Vwdx. 

The constant 6i appearing in (3.3) is a scaling factor. One reasonable choice is to 
take 6i = (A' + A%)/2, where A' and A' are respectively the largest and smallest 
eigenvalue of the 3 x 3 matrix {aij (xo)} at some point xo E Ri. Then the values 
of c and C appearing in (3.3) only depend on the local variation of the coefficients 

{aij} on the subregions. It is straightforward to show that (3.3) also holds in the 
case of finite differences. 

The problem of defining a replacement for Ai (WH, WH) is thus the same as that 
of finding one for dD(IiWH, IiWH). Note that IiWH depends only on its boundary 
values. Accordingly, the form dD(IiWH, Ii4WH) can be replaced by a form which 
explicitly depends only on the boundary values of IiWH. 

To this end, we introduce a bilinear form Q on Sh(aQ) X Sh(aQ) and define the 
form B by 

m 
(3.4) B(W, W) = Z{Ai(Wp, Wp) + d6i Q(IiW - yi(W), IiW - (W))}, 

i=l 

where -yi(W), for each i and W, is the constant function on Q whose value is 
determined by 

(3.5) Q(IhW - -i(W), 1) = 0. 

Notice that the function Wp depends upon i in (3.4). For convenience we have 
suppressed this dependence in the notation. 

Two constructions of Q which lead to effective domain decomposition algorithms 
will be given in the next section. For the remainder of this section, we assume that 
such a form has been given which satisfies 

(3.6) a>o(h)Q(V, V) < IVI 2 ? < 1(h)Q(V,V) for all V e Sh(au). 

For the Q to be defined, the constants ao(h) and a,(h) can be estimated in terms 
of h (see Proposition 2). 

We then have the following proposition. 

PROPOSITION 1. Assume that (3.6) holds. There are constants :2 and f3 which 
do not depend on d or h satisfying 

(3.7) 32ao (d/h) B(W, W) < A(W, W) < /3a 1(d/h) B(W, W) 
for all W E Sh(Q). 

Proof. By (2.3) and (3.4), it suffices to consider a fixed subdomain QiN. Let 
W E Sh(Qi) be decomposed into W = Wp + WH as in (3.1.). By the definition of 
B and (3.2), it suffices to show 

(3.8) d64 ao(d/h) Q(LW - -yi(W), LhW - Yi(W)) < cA?(W, W) 
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and 

(3.9) Ai(WH,WH) < Cd6ia1 (d/h)Q(IiW --1i(W),iW- -i(W)), 

where -yji(W) is the constant appearing in (3.5). Let (IiW)H be the discrete har- 
monic function in Sh((Q) which equals IiW on K2, i.e., (IiW)H is the unique function 
in Sh(Q) which equals IiW on A9 and satisfies the homogeneous equation 

(3.10) D((IiW)H, I?) = 0 for all 1 E Soi2) 

For any constant -y on Q, (3.5) implies 

Q(IiW - -i(W), IiW - '1i (W)) < Q(IW - .a, Ii- ). 

In particular, taking -y to be the average value of (IiW)H on Q, it follows from 
(3.6), the trace theorem and Poincare's inequality that 

Q(IiW--1i(W)JIW--1i(W)) < cac (h)D((IiW)H (IiW)H) 

< cao 1 h)D(IiW, IiW). 

Inequality (3.8) then follows from (3.3). 
We next prove (3.9). We first show that for discrete harmonic functions V, 

(3.11) ||V||12 (Q) < ClIVI1,2 

By the Poincare inequality and the minimization property of discrete harmonic 
functions, (3.11) will follow if we can construct a function W E Sh((Q) with the 
same boundary values as V satisfying 

(3.12) IIWI2H1(Q) < C1lIV1/2,IQ 

To do this, we use a variation of an argument given in [1]. Let v be the harmonic 
function on Q which is equal to V on e90. There exists a function W E Sh (Q) 
(which may differ from V on e90) satisfying 

(3.13) lIV _ WII2 + h2 IIV - WII( ) < C IVIIH1(2) 

The function W in (3.13) can be taken to be, for example, the L2(Q) projection of 
v. We define W to be the function in Sh(Q2) which is equal to V on the nodes of 

Sh(Q) which lie on (90 and is equal to W on the nodes of Sh(Q) which are in the 
interior of Q. Clearly, 

W (A < w - + IIWIIH1(0 ? ci-/2 Iv - Wlan + IIWIIH1(0) 

By a well-known trace inequality, 

IV- WIa ? C(h-1 Iiv - WI + h liv-WII2l(Q)) 

Combining the above inequalities with the well-known inequality for harmonic func- 
tions, 

|IVIIH1(0) < 
CIVI112,aQ) 

completes the proof of (3.12). 
Let X be the function in Sh(f2i) satisfying IiX = (IiW)H. Note that 

X=W ona?2i, 
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and hence by (3.1),(3.3), 

Ai (WH, WH) < Ai (X, X) < CdbiD ((IiW)H, (IiW)H) 
= Cd6iD((IiW) H - -Ii(W), (IiW)H -(W)) 

Applying (3.11) gives 

Ai (WH, WH) < Cd? i I Ii W-_? (W) 12 

Inequality (3.9) now follows from (3.6), which completes the proof of Proposi- 
tion 1. 

4. The Construction and Analysis of Q. In this section, we construct and 
analyze two forms Qj which gives rise to effective domain decomposition precondi- 
tioners for three-dimensional problems. It will be shown that for each of these forms, 
(3.6) holds with a1 (h) < C and ao(h) > c/(1 + In2(h-')). Thus, by Proposition 
1, the preconditioner B defined by (3.4) using these Qj will give rise to precondi- 
tioned systems with condition number growth bounded by Co(1 + In2 (d/h)). As 
will be demonstrated in Section 5, the first form Q, gives rise to a more efficient 
computational strategy and is hence the preferred method. We include the second 
form since it is, in some sense, the natural extension of the method of Part I to 
three dimensions. 

We want to derive replacement forms for the norm j *12 an on ShY(0). As in 

[14], [16], this norm is given by 

(f f(w (x) - w(y))2 + IW'2 
1/2 

(4.1) IwI1/2,an = O J J z 3 ds(x) ds(y) + IWIaQ) 

where s denotes area on 9q. Let rf be a face of Q. The space it/2(P[) is defined 
to be the completion of the smooth functions defined on 90 with support in rf 

with respect to the norm given by (4.1). 
Remark 4.1. It is well known that the space H r/2(P[) is the interpolation space 

which is halfway between Ho (rf) and L2 (rf) [14], [16]. For smooth functions with 

support in rf, (-zu,u4'12 is equivalent to the norm on Ho(l') (here, A denotes 

the two-dimensional Laplacian on the face). Consequently, the completion of the 
norm given by 

(4.2) (( ww for w E Ho(, 

is equivalent to the norm on f1/2(lf). 

We shall use a discrete operator 1lo/2 which approximates (_A)1/2 in the defini- 
tions of the computational forms Q, and Q2. Let 

Sh(rP) _ {5Iff such that q E Sh(&Q) and X =0 on the edges of Q}. 

The discrete operator lo: S9 (Pf) J-4 SP (f[) is defined by 

(4.3) (IO I, I)tf = fVTrI V4Ids forall' SO(rif). 
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Here, V denotes the two-dimensional gradient on f. The operator lo is symmetric 

positive definite on S0(rFf) and 11/2 is defined to be its positive square root. 
Remark 4.2. Note that the discrete operator 10 is a finite-dimensional approxi- 

mation to -A. It can be shown by interpolation [13, Theorem 9.1] and the inverse 
assumptions on S0(rjf) that 

(4.4) cIVIl,2(tf) ? (1o/2 V, VI) < C IV1l/2(tf) for all V E So f) 

The constants c and C in (4.4) can be chosen to be independent of h. 
We now construct the first form Ql. 
Method 1. We decompose functions V E Sh(on) by V = Ve,i + Vf,1, where Ve, 

and Vf,1 satisfy: 

(1) Vf,l = onF?_Ut.i at . 
(2) Ve,i = 0 on all nodes on the faces of Q. 

Define 
6 

(4.5) Qi(V,V) h V(xf)2 +ZKlV/2Vf,1,Vf,)^f. 
xiEei 

The first sum in (4.5) is over the nodes xi on re. 
Remark 4.3. The quasi-uniformity of the mesh defined on re implies that 

C (VI V)t' < h () <CV,)e 

xrEte 

The construction of the second form Q2 differs from the first only in the way 
that V is decomposed. 

Method 2. We define Ve,2 on XF to be the function which equals V on re and is 
discrete harmonic in the faces, i.e., for each face rf 

(4.6) f VVe,2 V4> ds = 0 for all 4> E So( f). 
ri 

Again, we set V = Ve,2 + Vf,2 and define 

6 

(4.7) Q2(V, V) h h V(x0)2 +Z Klj/2Vf,2 Vf,2 fv 
xiE ret 

Note that the definitions (4.5) and (4.7) only differ in their respective use of Vf,l 
and Vf,2. These constructions lead to completely different quadratic forms. 

The following proposition provides estimates for ao and a1 for the forms Qi and 
Q2. Its proof will be given later in this section. 

PROPOSITION 2. For j = 1, 2, there are positive constants c and C which are 
independent of h and satisfy 

(4.8) c(1+ln2(h-l))-1Qj(V,V) < IVI2aQ ?CQ3(V,V) for allV eShG9Q). 

Combining Propositions 1 and 2 gives the following theorem. 
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THEOREM. Let B be defined by (3.4) with Q = Q, or Q = Q2. Then there are 
constants c and C which are independent of d and h satisfying 

c(l + In2 (d/h)) - 1 B(W, W) < A (W, W) < CB(W, W) for all W e Sh(Q). 

Remark 4.4. A construction analogous to that used in Method 1 can be car- 
ried out in the two-dimensional case. This leads to a preconditioned system with 
condition number on the order of In2(d/h). Instead of the corner problem of the 
preconditioner of [6], this method requires the solution of a sparse system with the 
number of variables equal to the number of subdomains. 

We next give a proof of Proposition 2. We shall start by stating some lemmas 
which are used in the proof. Two of these lemmas (Lemmas 4.2 and 4.3) represent 
a fundamental part of the analysis. We prove the proposition assuming the lemmas 
and then devote the remainder of the section to the proof of the lemmas. 

LEMMA 4.1. LetVESh(aQ) and Ve=Ve, orVe=Ve,2; then 

IVe 12 < C (V, V)je. 

LEMMA 4.2. Let V e Sh(); then 

(VIV) <?C(l +ln(h'1))V 12,aO' 

LEMMA 4.3. Let V E Sh(aQ) and Vf = Vf,l or Vf = Vf,2. Then 

(1/2vfI Vf) < C(l +ln h 1/2a 

holds for every face riJ of (9t. 

Assuming Lemmas 4.1-4.3, we can prove Proposition 2. 
Proof of Proposition 2. Let V in Sh(PO) be decomposed into V Ve + Vf . Then 

6\ 

(4.9) <Vj12 ? 7 (ve12 iIV;i1 + 2 

where VJi is the function defined on a which equals Vf on r1i and is zero on AR/ri[. 
The second inequality of the proposition follows from (4.9), Lemma 4.1, Remarks 
4.3, 4.2 and the definition of H1/2(rP). The first inequality of the proposition 
follows from Remark 4.3 and Lemmas 4.2 and 4.3. 

We now proceed with the proof of the lemmas. Some of the details for the proofs 
in the case of Method 2 are somewhat technical. So as not to disturb the flow of 
the domain decomposition analysis, these details will be given in the Appendix. 

Proof of Lemma 4.1 for Method 1. By convexity, 

(4.10) Ie 1 1/2 ,I V 8QIe1I1A 

Using the fact that Ve,i vanishes on the nodes of aQ which are not on pe, a straight- 
forward computation gives 

aVe,iIn < Ch2 E Ve,i(Xi)2 

x.EPer 



12 JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND ALFRED H. SCHATZ 

and 

IVe, 112,a < C E Ve,1(Xi)2. 
XrEPe 

The lemma for Method 1 then follows from Remark 4.3. 
The proof of Lemma 4.1 in the case of Method 2 involves some technical estimates 

for functions which are discrete harmonic on the faces of aQ and will be given in 
the Appendix. 

In preparation for the proofs of the remaining two lemmas, we state a certain 
type of two-dimensional discrete Sobolev inequality whose proof can be found in 
[3], [6]. Let Sh be a subspace of approximating functions with mesh size h defined 
on a two-dimensional domain Q (in our applications, Sh will be Sh(Q) restricted 
to some two-dimensional slice of Q). We assume that Q satisfies a cone condition 
of size d and angle a bounded away from zero and that Sh satisfies the following 
inverse inequality: 

(4.11) IVVILOOc(fQ) < Clh 1 IVIL-(n) for all V E Sh. 

Then there exists a positive constant C independent of h such that 

(4.12) IVIOO(6) < C(1 + ln(h'-)) IVI12Q for all V E Sh. 

Proof of Lemma 4.2. Let V E Sh(d ). Define V to be the discrete harmonic 
extension of V (into the interior of Q). By (3.11), it suffices to show that 

(V, V)t. < c(1 + ln(h-1)) IVII I . 
Without loss of generality, we consider the integral over that part of the edge which 
corresponds to x = z = 0. Then by (4.12), 

(4.13) j V2 (0, y, 0) dy < c(1 +ln(h-))j |V(,y,.) H dy. 

The H1 norm in the last integral of (4.13) is over the intersection of Q with the 
plane at the given y-value. This integral is clearly bounded by 2IVII2, and hence 
the proof is complete. 

Proof of Lemma 4.3. Much of the proof of the lemma is the same whether we are 
considering Method 1 or Method 2. Accordingly, let V E SO(O2) be decomposed 
into V = Ve + Vf, where Ve and Vf are given by either Method 1 or Method 2. By 
Remark 4.2, it suffices to prove 

(4.14) IVf 12 <f) ? C(1 + ln2(h 1))IVI12s2. 

Let w be the function defined on aQ which equals Vf on rif and is zero on ao/IV. 
Then the rP/2(Jf) norm of Vf is given by (4.1). The corresponding integral term 
in (4.1) reduces to 

ffl (Vf() - Vf(y)V ds(z) ds(y) +2 | Vf (X)2 
Jf~fJf'f x-yj 

- dsx)d(y 2 2/f~j -yj ds (x) ds (y). 

Let the four edges of rif be denoted rf[e for j = 1,2,3,4. A straightforward 
computation gives that 

4 

j Ix- yi-3 ds(x) < E Dist(y, rP ) -1 < C 1 -3ds(x), 
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where Dist(y, rfe,) denotes the distance from y to rP[J?. Thus, the quantity IVf 12l/2 (ff 

is equivalent to 

f '(Vf (X) _ Vf (y))2 
4 

_Vf__y__ 

(4.15) - ds(x) ds(y) + E l ds(y) JfJjf x - y13 dsx sy 1~ Dist (y,P{r,,) 

To bound the double integral term in (4.15), it suffices to bound the square of 
the H1/2(d) norm of Vf. Lemmas 4.1 and 4.2 give 

(4.16) <VfIl2a2 ? 2(v12 + IVe122 < C( + ln(h-1))V2 

Thus, to complete the proof of the theorem, we need only bound the single integral 
terms in (4.15). 

Without loss of generality, it suffices to consider the face rf in the plane z = 0 
and a typical term, for example 

(4.17) 
Vf 

lo 
, 
yz 02ddY 

Thus it suffices to prove 

(4.18) lll Vf (X,y, O)2 dx dy + 1 & Vf (,y,O) dx dy 

< c(1+ ln2 (h-)I 1 122Anao 

For the first term in (4.18), we have 

h Vf(Xy 0)2 1 t 2 
101i: ~ ~dxdy <ch2 GIf x,O dy. 

0 Lo 

Let Vf be the discrete harmonic extension of Vf into 'O. By an inverse property of 
the subspace Sh(Q) restricted to the plane y = constant and (4.12), 

(4.19) j x dx dy < c(l + ln(h')) Vf(y, .) I dy. 

The integral term in the right-hand side of (4.19) is clearly bounded by IIVf illj . 

But Vf is discrete harmonic and hence by (3.11) and (4.16), 

(4.20) 101 h Vf(X,y,0)2 ddy < c(1 +ln(h'))IVfIl/28n 

< C(1 + ln2(h )) IV/12ly2. 

We next consider the second term of (4.18). For the case of Method 1, we have 

f f V, (X, y, 0)2 d d 
(4.21) O?ln(h1)j 1 dy 

(4.21) < ln(h- 1 )/i1( ,) 2. dy 
ln 

'0 
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Let V denote the discrete harmonic extension of V into Q. By (4.12) and (3.11), 

(4.22) j V dy c(1+ln(h<1))!VII ?c(l + ln(h1))IVI2/2an. 

Since Ve,1 vanishes on the interior nodes of the faces, 

IVe 1 (.X Y, ?) 12? < Ve', (0, Y, 0)2 + Ve1,Y,02 

Hence by Lemma 4.2, 

(4.23) 101 IVe, ( , Y, O) ILOO dy < C (Ve, X Ve, )te 

< c(l + ln(h1-l))IVI12/2. 

Inequality (4.18) follows from (4.20), (4.21), (4.22), and (4.23). This completes the 
proof of the lemma in the case of Method 1. 

To complete the proof of the lemma, we have only to bound the second integral 
term in (4.18) in the case of Method 2. Applying the arithmetic geometric mean 
inequality, and changing the order of integration, gives 

f|f| Vf2 (X, y, 0)2 dx dy 

(4.24) < 2 1 (s,) dxdy + 2J 1 Ve,2((X0)2 dydx 

< 2ln(h 1)(f IV(.,y,0)12L? dy+ sup f Ve,2(X Y,0)2 dy) 
O ::Z ~~~~E[0,1] 0 

In the Appendix, we shall show that 

1 
(4.25) sup ] Ve,2(X,y,0)2dy < C(Ve,2,Ve,2)frc- 

xE[0,1] 

Applying (4.22) to the first term in (4.24) and (4.25) and Lemma 4.2 to the second 
gives the desired bound for the second term of (4.18). This completes the proof of 
the lemma. 

5. The Solution of the Preconditioning Problem (1.5). In this section, 
we give an efficient algorithm for solving (1.5) in the case of Method 1. A similar 
algorithm can be developed for Method 2. Because of the discrete harmonic exten- 
sions on the faces, the algorithm for Method 2 is somewhat less efficient than that 
corresponding to Method 1 (see Remark 5.2). 

In general, when B is of the form (3.4), we solve first for Wp on each subdomain, 
then for the values of WH on r, and finally extend WH to all of Q. Most of the 
ideas described in this section have appeared in our earlier papers. However, the 
application of these techniques is not transparent and hence we include a discussion 
here. 

The solution of (1.5) involves a three-step procedure. As already mentioned, the 
problem of finding the solution W to (1.5) reduces to that of computing Wp and 
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WH on each subdomain. The first step is to compute Wp. By taking 4 E SO (0) 
in (1.5) and using (3.4), it follows that 

(5.1) Aj(Wp, I) = G(Q) for all ESh?(Qi) 

Thus, Wp can be determined by solving independent discrete Dirichlet problems 
on the subregions. The second step involves the computation of the values of WH 
on r. These values are determined as the solution of the problem 

m 

(5.2) d EiQ(IiW --i (W), 0) 

G(O) - A(Wp, 0) F(0) for all 0 E Sh(r). 

Here, 0 denotes any extension of 0 in Sh(Q), and {-yi(W)} are the constants defined 
by (3.5). Note that by (5.1), the right-hand side of (5.2) is independent of the 
particular extension 0. The development of an algorithm for solving (5.2) is an 
important part of this section and will be considered shortly. Assuming the values 
of WH on r have been computed, the third step is to compute the 'discrete Ai- 
harmonic' extension into the interior of the subdomains. This is done separately 
on each subdomain as follows: Let WH be any extension of the boundary values 
of WH in Sh(72i), e.g., the extension which is zero at all of the nodes not on 8Qi. 
Then on Qi, WH = Y + WH, where Y e Sh7(Qi) is the solution of 

(5.3) Ai (Y, 1) = -Ai (WH, 1) for all (I E Sho Pi)- 

Thus, the computation of WH (once its values on r are known) reduces to the 
solution of independent discrete Dirichlet problems on the subdomains. 

To complete the description of the algorithm, we provide an efficient way to 
compute the function WH on r, i.e., the solution of (5.2). This involves a two-step 
procedure. The first step requires the computation of the average values {Jyi(W)} 
appearing in (5.2). We shall use a technique described in [7] to derive a sparse 
matrix problem for these values. We will only consider the case when all of the 6i's 
are equal to one; the more general case is similar (cf. [7]). This matrix is derived 
using a special choice of test functions, Xi E Sh(r), for i = 1, . . . , m. Consider a 
fixed i. We define the function qi to vanish on the nodes which are not on ali. Its 
values on the nodes of (90i are to be determined. 

Let X and Y be in Sh((Q) and r[ rfk; then by (A.3) and (A.4), 

(5.4) (1 /2(Iix)f, (IjY)f) f - (l1/2(IkX)fI (IkY)f) f. 

Here, ( )f denotes the face component in the decomposition of Method 1. Let X(xj) 
be the indices of the subregions which share a boundary'node xj and Y(rP[) be 

the indices of the two subregions which share a boundary face rP1. The number 
o3 of indices in Y (xj) will be denoted jA (x3) I Then (5.4) and the properties of q5i 
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imply 

m 

dZQ(IjW--yj(W),q$j) = dh E S I(Xj)IW(xj)0i(xj) 
j=1 XjErt 

6 

+2d E (l/2(IiW)f, (Ii bi)f)rf 
j=j 

(5.5) -dh 5 ( E 3k(W)i(Xj) 
x Er kEX(xj() 

- d E (IEAt 2)(10 )f (ji0i)f)r 
j=1 lA'(rP) 3 

Sl + S2 + S3 + S4, 

where {xj} are the nodal values on rF = U-6= drfj. 
We define qi at the nodal values on af2i by 

f1l/X(xj)l when xj E r~, 

(5.6) X$i(Xj) = { 1/2 when xj E rf 

Then, by (3.5), the first two sums of (5.5) can be written 

(5.7) S1 + S2 = dQ(IiW, 1) = -i (W)dQ(1, 1). 

Combining (5.5) and (5.7) gives 

(5.8) dQ(1, 1X l i (W) - MikYk (W) = F(0i) 

where 

x3er,nrk 1 j=1.6 (l~I/2(1)f, (1)f)f Mik= dh 
S 

d E 
,Eretr (j=l -, ..............,62 k 

rf naQk #0 

It is straightforward to check that M is symmetric with nonnegative entries. Fur- 
thermore, the row sum of M for any row is less than or equal to dQ(1, 1), with 
strict inequality when the row corresponds to a domain Q2i with af2i n a( : 0. 
This means that dQ(1, 1)I - M (where I denotes the m x m identity matrix) is an 
M-matrix [17] and resembles matrices arising in standard finite difference methods. 
We compute the values of {-i (W) } by solving this m x m system. 

Remark 5.1. In the case of many subdomains, the matrix dQ(1, 1)I-M is sparse 
since the ith equation only involves the values of -k(W) for subdomains Q2k with 
af9i n a $2 : 0. 

Once the values of {1-k(W)} are known, we compute the values of WH on r as 
follows. We are left to solve 

m m 
(5.9) d Q(IiW, O) = F(O) + d Q(-/i(W),I) f=F(PO) for all 0 E Sh(r). 

i=l i=l 
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By (5.4), we have 

m 
d Q(IiW, 0) = dh E IY(xj) I W(xj)O(xj) 

(5.10) x= jEre 

+dE (l1/1(IkW)f,(Ik0)ff for all 0 E Sh(r). 
k,l 

Here, rF is the union of the closures of the edges of the subdomains. For functions 
0 with support contained on the jth face of the ith subregion, (5.9)-(5.10) reduces 
to 

(5.11) 2d (l/2 (IiW)X (Ii0)f^f = F(0). 

Equation (5.11) completely determines the values of W on the nodes of rfj. For 
functions 0 which vanish on the face nodes, (5.9)-(5.10) reduces to 

(5.12) dh E XY(xj)I W(xj)0(xj) =F(0) 
xi Ere 

The nodal values of W on rF are trivially computed from (5.12) using 0 correspond- 
ing to nodal basis functions. 

Remark 5.2. An algorithm similar to that described above could be developed 
for the solution of the preconditioning form B defined using Q2 (i.e., Method 2). 
In fact, if Iioi is discrete harmonic on the faces, (5.5) gets replaced by 

m 
d EQ(I W -yi (W)I qi) = dh E jY(xj)I W(xj)qi$(xj) 

i= 1 jri 

-dh E ( E k(w) Oi(xj). 

zj Eri kEX(j ) 

For this case, qi (xj) is defined by (5.6) for xj E rF and extended discrete harmon- 
ically into the faces. An equation for the values of -yi(W) analogous to (5.8) can 
then be derived. As above, once the values of -yi(W) have been computed, we are 
left to solve (5.9). (5.10) gets replaced by 

m 
d ZQ(IiW, 0) = dh E Y(xj)I W(xj) 0(xj) 

(5.13) ix1 xjere 

+ d (l/ 2(IkW) f ,2, (Ik0) f 2 for all 0 E Sh (r). 
k,l 

The values of (IkW)f,2 can then be computed on the faces using equations similar 
to (5.11). In the case of Method 2, (5.12) is only valid for functions 0 for which 
IhO is discrete harmonic on all faces of (90 for all i. Thus the discrete harmonic 
extension into the faces must be computed for each edge nodal function (i.e., a 
function which is one on one of the edge nodes and vanishes on the remaining edge 
nodes). Even if these extensions are preprocessed, one must compute F applied 
to each of these for each inversion of B. This results in a work increase of O(N) 
operations and substantially complicates the coding. 
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We conclude this section with a review of the procedure developed here for 
solving (1.5) when B is given by (3.4) and Q is given by Method 1. 

Algorithm for Solving (1.5). 
(1) Compute Wp by solving (5.1). This involves the solution of Dirichlet prob- 

lems on the subdomains, which can be done independently and in parallel. 
(2) Compute the values of WH on r solving (5.2). First, we compute the values 

{-yi (W) } by solving the matrix problem (5.8). The values of WH on r are 
then computed by (5.11) and (5.12). 

(3) Extend the boundary values of WH by solving (5.3). As in Step 1, this 
involves the solution of Dirichlet problems on the subdomains, which can 
be done independently and in parallel. 

(4) Set W = Wp + WH. 

6. Numerical Experiments. In this section, we present the results of numer- 
ical experiments using the preconditioners developed earlier. We shall only report 
results for the more computationally effective algorithms resulting from Method 1. 
We have made no attempt to develop a general code, and consequently our results 
will be for model applications. These computations are designed to illustrate the 
theory developed in the earlier sections. 

The domain Q will be the unit cube partitioned into m = mo x mo x mo sub- 
domains which are subcubes of side length 1/mo. We will use a finite difference 
approximation on a grid of size k x k x k. Let h = 1/(k + 1) and J = (jl, j2, j3) be 
a multi-integer. Then the nodes of the grid are the points Xj = (jlh, j2h,j3h) for 
1 < j?,j2,j3 < k. 

Example 1. For the first example, we consider the model problem 

-Au = f in Q, 

u = O on 9Q. 

Here, A denotes the Laplace operator. The finite difference approximation to u is 
the nodal function U which satisfies (2.4). In this case 

A(V, W) = (LhV) W, 

where Lh is the seven-point difference operator given by 

(6.1) (LhV)J = 6Vjl,2,j3- VJl+,1J2c/3 -Vl-1j2J3 -V3lIj2+l1j3 

-V3l j2-l,j3 -V3 1J2J3+1 -VjI,2,33-1- 

We define VK = 0 for indices K appearing on the right-hand side of (6.1) which are 
not in Q. 

For this example, the nodes on the faces of the subdomains are regularly spaced. 
We note that the definition of Method 1 and Method 2 only requires the computa- 
tion of lo/2 on the reference element with respect to the reference subspace. Because 
of the uniformly spaced grid on the faces, lo/2 can be economically computed by 
use of the discrete Fourier transform. In addition, it is possible to replace 1/2 on 
this subspace by any uniformly spectrally equivalent operator. For example, lo/2 

could be replaced by l/ where 1i/2 is h times the square root of the five-point 
operator on the face. We use lo/2 in the numerical examples of this section. 
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Table 6.1 gives computational results for Example 1. In this case, the cube was 
broken up into eight subcubes (m=2). We report the condition number K for the 
preconditioned system as a function of h. For comparison, we provide the function 

f(d/h) = 10.9 + .76log2 (d/h). 

The close correlation between K and f(1/2h) suggests that the growth of the 
condition number of the preconditioned system is in agreement with the theorem 
in Section 4. We have also included the number of nodes, N, and the number of 
iterations, Ni, of preconditioned conjugate gradient required to reduce the A-norm 
error of a typical example by a factor of .001. 

TABLE 6.1 
Iterative convergence for Example 1. 

h K f (1/2h) Ni N 

1/4 10.5 11.7 7 27 
1/8 13.9 13.9 8 343 

1/16 17.7 17.7 8 3375 
1/32 23 23 7 29791 

Example 2. In this example, we consider a variable coefficient problem which 
has large jumps in the coefficients across the subdomain boundaries. Specifically, 
we consider the problem 

-V.p,Vu=f inQ, 

u=0 on Q. 

For this example, we consider the unit cube broken down into twenty-seven subdo- 
mains. The function ,u is piecewise constant on the subregions with values given by 
Figure 6.1. Table 6.2 gives the results of computational experiments for this exam- 
ple. Note that the results for the condition number K of the preconditioned system 

8L=3 kL=, /1=1 /1=8 | =3 /i. =883 1L=3 L3 

Y y= I p.O =10 Y L=889 p=22 u=0.3 Y j=9 a=8.8 a=2 

t -looo<S H=loH [X=olly=3 
x x x 

0< z <1/3 /3 < Z < 2/3 2/3 <Z<I 

FIGURE 6.1 
Coefficients for Example 2. 

are of the same magnitude as those of Table 6.1. This suggests that the method 
gives rise to convergence rates which are independent of jumps in coefficients across 
the subregions. This is in agreement with the analysis since, with an appropriate 
choice of {6b}, the constants c and C in (3.3) can be chosen independent of such 
Jumps. 
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TABLE 6.2 
Iterative convergence for Example 2. 

h K f (1/3h) Ni T N 

1/6 11.6 11.7 11 125 
1/12 14.1 13.9 10 1331 
1/24 18.3 17.7 10 12167 

7. Appendix. We first prove Lemma 4.1 in the case of Method 2. To this end, 
we prove auxiliary lemmas involving harmonic functions. Then the proof of Lemma 
4.1 will follow from approximation. 

We will use the integral representation given in (4.1) for estimating the H1'2 (al) 
norm. Let 01 and 02 be two-dimensional domains and u be defined on 01 U 02. We 
define 

(7.1) I(U,2,u) = fO j( (X) -(Y)) dxdy. I(OlAi) 
2 x - y13 

The first auxiliary lemma will involve the domain Q = [-1,1] x [0,1]. Let 
fl = [-1,0 ] x [O, 1], 62 = [0, 1] x [0, 1] and F = afll U a62 

LEMMA 7. 1. Let u E H1/2 (a) be harmonic in li fori= 1, 2. Then 

(7.2) U1u2/ Q<cul. 

Proof. We define 

Ue(X, y) = (u(x, y) + u(-x, y))/2 

and 

u0(x, y) = (u(x, y) - u(-x, y))/2. 

Now u = Ue +uo gives an orthogonal decomposition of u in the L2(17)-inner product. 
Consequently, it suffices to prove (7.2) for u = Ue and u = uo. By the Schwarz 
reflection principle, uo is harmonic in Q and hence 

lUo 12,/2 < C IUOK12 < C IUOIr. 

By a representation analogous to (4.1), 

lUe |/2,Q = I(Q, Qi Ue) + lUe IQ 
- 2I(Q2i4,l Ue) + 

2I(fl,I2 i4 Ue) + lUel 2 

Since Ix -Y l ? l(-xl,x2) - yl holds when x E Q1 and y E 62, 

I(Q1, I 2, Ue) <5io I(, Ql, Ue). 

Hence, 

lUel1/2,Q < C lUel1/2,, <? C lUelQi < C lUej Ir 

This completes the proof of the lemma. 
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The following lemma gives the result corresponding to Lemma 4.1 for functions 
which are harmonic on the faces of an. 

LEMMA 7.2. Let w E H1/2(d972) be a function which is harmonic on each face 
of a6l. Then 

IWi2/2 ? < c (W, W)te- 

Proof. We again use (4.1) to bound the H 1/2(OQ) norm. The integral term of 
(4.1) is given by 

6 

IQ,Qw) =EIrrfW). 
i,j=1 

Let wi be the union of the two faces adjacent to the ith edge. If two faces rf and 
rf do not share an edge, then 

I(. f, w)< cIWI82 3~~~~~~~~~~~~~~ 

and hence 

(7.3) IWI1/2an < c (I(WiWi W) + IW2 

The lemma follows from (7.3) and Lemma 7.1. 
Proof of Lemma 4.1 for Method 2. Let V be a function which is discrete harmonic 

on the faces of A9. Let v be the function which equals V on re and is harmonic on 
the faces of al. By Lemma 7.2, it obviously suffices to show that 

IV - V2a < C c IV-2 

By convexity, 

(7.4) VV _ V12 < c IV - vlao IV - vI1,.a i 

Applying well-known finite element techniques to estimate IV - vI and the Poincare 
inequality gives 

(7.5) IV - VI/2aQ < chDa,y(V-v,V-v) < chD,ao(V-v,V-v), 

where V is the function in Sh (Q) which equals V on re and vanishes on the face 
nodes and D8,O(., ) denotes the Dirichlet inner product on a9f. By the arithmetic 
geometric mean inequality, an inequality similar to (3.11), inverse assumptions and 
an obvious computation, 

6 

1/2,aQ?ChE{IVi/2 + Drf(V, V)} 1 C 2Vare. 
i=l 

This completes the proof of the lemma. 
We next prove (4.25). To do this, we first prove the analogous result for harmonic 

functions. The discrete result will then be derived by approximation. 
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LEMMA 7.3. Let u be harmonic on the face rf in the plane z = O. Then 

(7.6) sup [ / U2(x, y, 0) dy < C u2 ds. 

Proof. Let u = Ej=1 U3, where u; is the harmonic function which equals u on 

r,fe and vanishes on the remaining three edges. By the arithmetic geometric mean % 3 
inequality and obvious properties of the integral, it suffices to prove that 

sup u? (x, y, 0) dy < C u? ds 
XE [0,1] 

3 
rfe 3J 

holds for j = 1,2,3,4. By obvious symmetries involving the {uj}, it suffices to 
show that 

(7.7) sup I u(x, y, O)dy + sup I u? (x,y,0)dx < CIr ? u ds 
XE[O,1] 3O YE[O,l] O f,e 

holds for any j. Without loss of generality, we consider ul, the function which is 
nonzero on the line x = 1. Expanding ul in a sine series gives 

00 /erkx - eirkx' 
(7.8) Ul (X, y, 0) = Z ak sin(7rky) e( k e 

k=1/ 

We consider the two terms of (7.7) separately. For the first, we use (7.8) and the 
Plancherel Theorem to get 

1 00 ~~~~2e 7rkx_ e- kx\2 
sup |' ul(X, y, 0) dy = 1/2 sup E kk - kek ) 

xE[0,1] JO xE[O,1] k=1 / 
r e-r 

00 1 

< 1/2 = / u1 (1, Y, 0)2 dy. 
k=1 = 

For the second term of (7.7), using (7.8) and changing the order of summation 
and integration gives 

1 

sup 1 u2(x, y, 0) dx 

(7 ) YE[0,l]O 
(7.9) ~~~~~00 I1 /e7rkx e--7kx\ /erlx e-lrlx 

< E lakl lall ] (rk -rk) ( l -,7rl dx. 
k,1=1 \ e-e/ e~ - e 

We clearly have that 

(e7kx -_e-rkxA < 2 

e-7k - e-rk J1-e-2e 

and hence 

(7.10) [1 (e e ) e -e ) dx < 
er k e ke7r k erl e-e'rl k +lI 

Combining the above inequalities gives 

sup f1ul(x,y,0)dx<c k +I 
yE[0,1] J k,l=1 



THE CONSTRUCTION OF PRECONDITIONERS FOR ELLIPTIC PROBLEMS, IV 23 

Applying Hilbert's Double Series Theorem (cf. [12]) finally gives 
1 0o 1 

(7.11) sup u'(x, y,0)dx < C cja < C ui(1, y,O)2dy. 
yE[O,1] k=1 

This completes the proof of the lenuna. 
Proof of (4.25). We must prove that (7.6) holds for functions U E Sh (9f7Q) which 

are discrete harmonic on the face rf. Let u be the function which equals U on aN 
and is harmonic on rf. By the arithmetic geometric mean inequality and Lemma 
7.3, it suffices to show that 

1r 
j (u(x, y, )- U(x, y,O ))2 dy < cj U2 ds 

holds for any x E [0, 1]. By standard finite element techniques, the Poincare and 
trace inequalities, 

1 

j(u(x, y, 0) - U(x, y, O))2 dy < ch IU _ U1/2aV 

<chlu- a ? ChDn(u-U,u -U). 

Inequality (4.25) follows from the argument used to bound (7.5) in the proof of 
Lemma 4.1 for Method 2. 
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